现实状况下梅特勒托利多称重模块能够获得怎样的精确度?
称秤系统的精确度取决于所采用的称重传感器的质量。您能够从秤系统获得的佳状态也只是达到称重传感器的性能额定值。以下是优质的称重传感器的标准性能额定值:
? 非线性额定量程 (R.C.) 的 ±0.01%
?滞后:额定量程 (R.C.) 的 ±0.02%
? 综合误差:额定量程 (R.C.) 的 ±0.02% 到 0.03%
综合误差是由非线性和滞后联合作用产生的误差。图 3-6 所示为称重传感器综合误差,即从零负载到额定量程之间的误差带。所有的重量读数都应在该 £ 误差带范围内。理想情况下,秤系统的精确度可以达到甚至过系统中单个称重传感器的精确度(系统量程的 0.02%,甚**)。但是,在现实状况下,精确度会受到环境因素和结构因素(如振动、温度、活动至固定连接、管路以及模块支撑完整
梅特勒托利多称重模块预测系统精确度
料罐秤的精确度由各种因素决定,包括仪表、称重传感器、安装硬件、料罐设计、底座以及环境影响
因素。不同的应用要求不同的称重精确度。精确的配料或填料过程需要的精确度**散装存储操作。表 3-2 详细介绍了四种称重精确度,并列出了会影响料罐秤达到这些精确度的性能的因素。遵循下表
中列出的建议将有助于确保料罐秤达到理想的精确度。
梅特勒托利多称重模块系统精确度总结
系统的真实精确度只能在安装了整个系统后通过测试和验证才能确定。安装完所有的管路和系统组件
后,添加校验砝码或其它物料直至秤达到满载量程,以对容器进行“测试”。这样可以避免产生累积压力,同时使系统稳定下来。系统稳定后,测试几次(从零负载到满载量程)以确定系统的终性能。从零负载开始,一步一步添加已知砝码,直至达到系统的满载量程。记录每一步的标重。然后在从系统中取下砝码的间隔读取重量读数。要确定系统的实际误差,请将标重读数与秤上添加的实际重量进行对比。
梅特勒托利多称重模块撞击载荷
秤发生撞击荷载可能是偶然状况,或者是由其操作本身造成,在设计过程中要考虑到这一状况,特别是料斗秤、台秤和皮带秤。它是由秤上重量的突变所致,例如,当物体掉到或者跌落到秤上时。典型的例子就是对铁屑进行称重,通过电磁收集器为称装载;以及用来对铸件称重的地秤,它用高架起重机将铸件装至秤上。如果冲击力过强,您就需要安装较大容量的称重传感器,或者采取其它措施限制外加负载。
为消除掉落物体产生的冲击荷载,您必须清楚掉落物体的重量,掉落的垂直距离、空秤结构的重量、称重传感器的数量以及称重传感器的额定量程和弯曲度。梅特勒-托利多数据表中列出了后者。
为消除降落物体(特别是吊车荷载应用)产生的撞击荷载,您必须清楚降落物体的重量、降落速度、空秤结构的重量、称重传感器的数量以及称重传感器的额定量程和挠曲度。
梅特勒托利多称重模块“压式称重模块”或* 7 章“拉式称重模块”中所述的标准方式确定称重传感器/称重模块的大小。然后检查撞击荷载能否对其造成损坏。找出载荷状况差的称重传感器,并用以下等式之一估算掉落或降落载荷附加至该称重传感器的大载荷。
MMAX = 掉落或降落载荷在差的称重传感器上产生的大负载(单位:lb [kg])。M1 = 差的称重传感器所承载的掉落或降落载荷部分(单位:lb [kg])。
梅特勒托利多称重模块M2 = 差的称重传感器所承载的秤的固定负载部分(单位:lb [kg])。
H = 物体掉落的高度(单位:英寸 [毫米])
四 R.C. = 称重传感器的额定量程 (Emax)(单位:lb [kg])。需要的话,请将其它单位换算成 lb 或 kg。
? = 额定量程下,称重传感器的倾斜度(单位:英寸 [毫米])。如果应用中使用了防震垫/减
振垫,请参见下面的“使用防震垫/减振垫”。
V = 物体降落的速度(单位:in/s [mm/s])
环 克 = 重力加速度 = 386 in/s2 [ = 9,810 mm/s2 ]
MMAX 应小于称重传感器或称重模块额定量程(单位:lb [kg])。这些等式计算得出的是秤结构发生严重
倾斜时的保守结果,例如,当负载掉落到相对合规的带有 4 个称重传感器的地秤中心位置时。注意, 等式可用于仅带有称重传感器的称重模块,并且一般情况下,称重模块的倾斜度被假定为相应称重传感器的倾斜度。计量单位保持一致,请使用 lb、in、in/s 和 in/s2 或 kg、mm、mm/s 和 mm/s2。
如果需要采取其它措施消除撞击荷载,*较大量程的称重传感器/称重模块是一种可行的解决方案, 或者您可以考虑一下方案之一:
?改变过程,从而降低物体置于秤上时产生的撞击荷载。
?切割或压式物料以减小料块大小。
?在秤台上添加一些杂物。
?使用减震物料,如防震垫/减振垫、螺旋弹簧、铁路枕木或者致密砂岩来抑制冲击力。

精确度 中等精度 低精度 水平检测
精确度等级 高 好 良好 一般
系统精确度
(系统量程百分比)* 0.015 至 0.033 0.033 至 0.10 0.10 至 0.50 大于 0.50
称重传感器利用率
(额定量程百分比)* ≥ 50 ≥ 30 ≥ 30 ≥ 20
应用类型 制剂、调配、配料、精确填料使用的反应容器 收集罐、料斗、传送系统、配料、填料 收集罐、料斗、传送系统 原料和商品的散装存储罐
梅特勒托利多称重模块
称重传感器认证 C6 或 C3 OIML、5000d CIII NTEP C3 至 D1 OIML、3000d
CIII 至 10,000d CIIIL NTEP D1 OIML、1000d CIII NTEP
(未批准) 批准或未批准
称重模块载荷悬挂 自校正 自校正或浮动 自校正、浮动或固定 自校正、浮动或固定
固定或静止的称重传感器 无 无 无 仅用于液体或气体
梅特勒托利多称重模块
料罐特性 准备校验砝码、稳固的安装支撑 准备校验砝码、稳固的安装支撑 准备校验砝码、稳固的安装支撑 稳固的安装支撑
进口和出口管路 **灵活型 **灵活型 灵活型和稳固型 灵活型和稳固型
底座 稳固且不受周围因素的影响,统一挠曲度 稳固且不受周围因素的影响,统一挠曲度 稳固且挠曲度统一 稳固且挠曲度统一
型号 自校正 自校正、浮动或张力 自校正、浮动、固定或张力 活动称重模块与固定称重模块或固定底座的结合
物料 建议使用不锈钢 碳钢、不锈钢 碳钢、不锈钢 碳钢、不锈钢

称重模块静态与动态载荷
在为某个应用程序选择称重模块时,考虑如何为称重模块施加载荷非常重要。料罐、料斗、料仓以及容器上的大多数称重模块应用都使用静态载荷。如果是静态载荷的话,则几乎或者根本不会对称重模块产生剪切力。像输送装置、管架、机械秤转换等应用以及带有高功率搅拌机和混合机的秤使用动态载荷。使用动态载荷,在将产品放在秤上或进行加工的过程中会将水平剪切力传输至称重模块。请参阅* 6 章“压式称重模块”,了解称重模块悬挂的类型以及其应用参数。
采用多少个称重模块?
对于现有安装而言,称重模块的数量取决于现有支撑的数量。如果一个料罐有四个支架,那么您就需要使用四个称重模块。
而对于新的安装而言,好选择三点支撑系统,因为其确保了在称重模块上分配正确的载荷。如果考虑风、流体晃动或者地震载荷因素,那么料罐可能需要四个或四个以上的支撑来另外加固,防止其倾斜。
大多数的秤应用都采用三个或者四个称重模块。梅特勒-托利多仪表可以计算四个、八个,甚至多的称重模块的输出总和,但是出四个以后就很难达到平均分配重量以及调整移位。
要计算每个称重模块的必要量程,请用系统总量程除以支撑的数量。总量程要应用安全系数,以防低估了重量或者重量分配不均。在* 6 章“压式称重模块”和* 7 章“拉式称重模块”中讲述了确定称重模块大小的程序。环境因素(如地震荷载和风力荷载)也会影响应用中称重模块的量程,请参见* 4 章“称重模块环境影响考虑因素”。
称重模块现场校准
另外一个要考虑的要素就是如何校准称重模块系统。如果您向现有料罐添加称重模块的话,可能需要改造料罐才能在上面悬挂合格的校验砝码。料罐至少要能够支撑相当于产品净重(规定量程)的 20%的重量。* 8 章“称重模块系统校准”中讲述了一些现场校准的方法。
称重模块是一种称量设备,它包含一个称重传感器,以及将称重传感器连接至平台、输送皮带、料罐、料斗、容器或者任何组成秤体的物体所*的安装硬件。通常情况下要用三到四个称重模块才能完全支撑物体的总重量。这样就能有效地将物体转变成秤体。一个称重模块系统必须能够 提供准确的称重数据,并且能够安全支撑物体。
称重模块分为两种基本类型:压式型和拉式型。
压式称重模块
压式称重模块适用于大多数的称重应用。这些模块可以直接安装到地面、结构底座或横梁上。料罐或其它物体安装在称重模块的**部。
一个典型的压式称重模块。它由称重传感器、**板(承受载荷)、负载销(将载荷从**板传至称重传感器)以及底板(用螺栓固定至地面或者其它支撑表面)组成。可能会用压紧螺栓来防止容器翻倒。至少需要三个称重模块组成三角形才能完全支撑一个秤体,4 个称重模块组成正方形或矩形的情况也很常见。
**板
称重传感器
压紧螺栓
底板
负载销
拉式称重模块
拉式称重模块用于上方(比如从建筑的上部构造或上层露面上)必须悬挂的料罐、料仓或其它物体上形成秤体。
一个典型的拉式称重模块。它采用的是 S 形的称重传感器,两端都有螺纹孔。两端都旋入了球形杆端轴承,连接叉装置通过螺纹杆连接至上部的结构和下部的料罐。通常情况下要用三个或三个以上的称重模块才能完全支撑起秤体。
-/gjjabi/-
http://njsl123.b2b168.com